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A general iterative algorithm is found for solving the set of open-shell SCF secular 
equations. It is based on a sequence of matrix diagonalizations and similarity trans- 
formations. 
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1. Introduction 

After Roothaan's classical paper [1 ] on the open-shell SCF theory much effort was 
devoted to find a general calculational scheme for solving the relevant secular equations. 
Two basically different problems are encountered in the open:shell SCF theory. One 
problem is related to the elimination of the off-diagonal Lagrange multipliers between 
various (closed and open) shells of the same symmetry. This problem was quite generally 
solved by Huzinaga [2]. 

The other problem is to find the algorithm for the numerical solutions of the resulting set 
of (formally) decoupled secular equations. Roothaan's solution to this problem was to 
construct a single secular equation with the extensive help of projection operators [1]. 
This idea was further elaborated by many authors (see Ref. [3] for a detailed bibliography). 
However, convergence difficulties often appear in this scheme since the eigenvalues of a 
new secular equation generally do not resemble the eigenvalues of original secular equations 
[4, 5]. Some improvement in the convergence is possible by adding more terms to the 
SCF matrix [3, 6]. 

Less attention was devoted to the problem of how to solve the set of open-shell secular 
equations directly, without the artificial construction of the secular equation discussed 
above. Suggestions made along this line [1, 2, 7] do not seem to solve the problem since 
the resulting orbitals of different shells turn out to be non-orthogonal. A general solution 
to this problem will be offered in the present paper. 

2. Statement of the Problem 

We shall limit the considerations of the present paper to the problem of solving the set 
of open-shell SCF secular equations as they appear in the LCAO-MO method. 
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Let us assume that the set of non-empty SCF orbitals q~ is partitioned into N separate 
subsets Kp, p = 1, 2.. .At, so that an arbitrary orthogonal (real unitary) transformation of 
orbitals in a given subset does not change the total wavefunction and the total energy 
accordingly. The open-shell problem is then characterized by a set of N secular equations 
[1, 2], 

N 

qr ~ K q  

with p = 1, 2, ...hr. The summation index q goes over all values 1, 2 . . . N  except the 
value p. Since orbitals may be assumed real in the framework of the HF method, F (p) will 
be represented by a real matrix. This matf ixF (p) and the matrix of the Lagrange multi- 
pliers are symmetric, 

F (p) = F(i p), Oa~ = Ot3o~, o~ C Kp, fl @ Kq, q --/= p. (2) 

Here the indices i, k go over all orbitals of the basis set. 

The first problem encountered in solving the set of coupled equations (1) is the problem 
of eliminating the coupling terms caused by the off-diagonal Lagrange multipliers 0t~ ~. 
A general solution to this problem was given by Huzinaga [2]. Namely, from (1) and (2) 
it follows that 

= (eft ]F(q)] ~ba), a E K p ,  fl@Kq, p:/:q. 

(3) 

Relation (3) is satisfied only by the SCF solutions, while in the course of the iterative pro- 
cedure it will not be necessarily fulfilled. As noticed by Huzinaga [2], the Lagrange multi- 
pliers may be expressed as a linear combination of expressions in (3), 

0 ~ = ( 1  - ~tqp)(C~lf(P)lOo~)+ ~lp((p~lf(q)[r , olCKp, ~ C K q  (4) 

where Xpq are free parameters and p v ~ q. With this formula for 0t3 ~ the secular equations 
in (1) may be formally decoupled [2] to take the following form 

F ( p ) -  ~s ~ ]~)13)(~13]xqP Ir162 o~@Kp (5) 
q~p 13EKq 

withp = 1, 2 . . .N ,  and 

X qp =--- (1 - Xqp)F (p) + ~tqpF (q). (6) 

If Xqp 4= 0, the new set of equations in (5) is fully equivalent to the initial set (1), and it 
takes care of the symmetry 0t~ ~ = 0 ~  of the Lagrange multipliers [8]. 

Davidson's prescription [7] 

Xqp =0  if p > q ,  Xqp = I  if p < q  (7) 

provides an example of the coupling operator in which certain Xpq vanish, but the equi- 
valence of Eqs. (1) and (5) is still maintained. 

The operator on the left-hand side of Eq. (5) is not Hermitian. Although it is not necessary, 
it is desirable from the computational point of view to have Hermitian operators so that 
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the iterative procedure in solving the secular equations could be based on matrix diagonal- 
izations. If  the Hermitian conjugate of the second term in (5) is added to the operator, 
secular equations are not affected and the SCF operator becomes Hermitian [2]. Thus, 
the set of coupled equations (1) is transformed into the set of decoupled equations 

G(P)ICa)-=%Ir , aEKp, p -- 1, 2 . . . N  (8) 

with Hermitian SCF operators 

G (p) = F (p) N -- ~ '  ~ (]dp~)(r (9) 
q ~ p  ~3EKq 

A general iterative procedure for solving the set of equations (8) will be described in the 
next section. 

3. Iterative Algorithm 

In order to visualize more easily the iterative algorithm for solving Eq. (8), a new set of 
symmetric matrices Q(P) is introduced, 

Q(P)=(r162 p--- 1, 2 . . . .  N, (lO) 

where the indices ~, v go over the full set of n orbitals including the empty ones. As a 
consequence of the secular equations (8), the matrices Q(P) have the following property 
when self-consistency is reached: 

Q(P)=8#ae  a, aEKp, = 1,2 .n, = 1,2 .N. (11) us /~ .. P .. 

In fact, the set of relations (11) is fully equivalent to the set of secular equations (8). 
Indeed, using the completeness of SCF orbitals, we have from (10) 

I wv '~ )o(P)~w = v~=l I(~ I G(P) IOe) = G(P) I(~a). (12) 
P=I = 

On the other hand we find from (11) 

n 

v 

This proves the equivalence of (11) and (8). 

The structure of the matrices Q(P), expressed by Eqs. (11), is shown for N = 3 in Fig. la. 
In this figure the white fields refer to zero submatrices. Diagonal submatfices are also 
distinctly represented. 

Before we proceed with the construction of the iterative algorithm which would lead to 
such a structure of matrices Q(P) as represented in Fig. la, we shall prove one useful prop- 
erty of these matrices. 

Theorem: If the parameters Xpq in (6) have the property Xpq = ~lP' then the following 
relation 

Q(P) + f ) (q )=o ,  aEKp, ~EKq, p : / : q  (14) 

results from the definition (10). 
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Fig. 1. Structure of matrices Q(P) 
for N = 3: (a) corresponding to 
relation (11), after the SCF solu- 
tion is found: (b) before self-con- 
sistency is reached. Different sec- 
tions correspond to the three shells 
of the non-empty orbitals (1, 2, 3) 
and to the shell of the virtual orbi- 
tals (v) 

In order to prove this theorem it is sufficient to use definitions (10), (9) and (6), and the 
symmetry Fi~ ) = F~ p). One finds 

Q(p) + c~(q) = ( ~  i (F(p) _ F(q))]  ~b~)(~kqp - -  ~kpq), (15) 

which proves the theorem. Although the requirements of  this theorem are weak indeed, 
it may be noticed that they are not fulfilled by Davidson's prescription, Eq. (7), and 
Roothaan's  choice of  Xpq (see Ref. [8] ): X21 = 1/(1 - f ) ,  X12 = - f / ( 1  - f ) .  

The property (14) plays a fundamental role in our construction of  the iterative procedure 
for solving Eqs. (8). Namely, although the matrices Q(P) exhibit the structure shown in 
Fig. la, it is sufficient to construct such an algorithm which would lead to the structure 
of  the matrices shown in Fig. lb. Indeed, if self-consistency is reached with an algorithm 
which attempts to form matrices Q(P) of the structures shown in Fig. lb,  the property 
(14) guarantees that zero-matrices will appear automatically in the corresponding places 
as required by Eqs. (11) and illustrated in Fig. la. Additional zeros of  the Q(3) matrix in 
Fig. lb result from a certain orthogonal transformation in the space of virtual orbitals, 
and they are irrelevant. 

We shall now find the iterative procedure which forms in each iterative step the matrices 
Q(P) of the structure shown in Fig. lb. I f  we introduce a basis set o f n  orthonormal orbi- 
tals Xi, the secular equations (8) take the following matrix form 

n 

~. G}f)ula = eauia , a EKp ,  i = 1, 2 . . .  n, (16) 
./=1 

where 

N n 

a}f  =-<• - 2 '  2 2 
q4=p I~EKq k = l  

(ui~uk~Xqy+ xq.Pukzuj~} (17) 

and 

1~o~) - 2 uioLI Xi). (18) 
i=1  

u is the orthogonal transformation matrix between the basis set orbitals Xi and the SCF 
orbitals ~b~. In this basis set the matrix Q(P) in (10) is given by 

(P) - . (19) Quv - ~.. uiuG}f)ujz,, P = 1, 2 . . . N ;  ~, u= 1, 2 . . n .  
q 
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Thus, Q(P) is obtained from the G (p) matrix by a similarity transformation. Clearly, G (p) 
itself is a function of the same matrix u which should be determined self-consistently. The 
purpose of the computation is to find iteratively such a matrix u which leads to the matri- 
ces Q(P) of the form expressed by (11). This may be achieved by the iterative procedure 
which consists of the following N steps: 

Step 1. Construct the matrices G (p), Eq. (17), from the trial matrix u ~ Find the orthogonal 
matrix v(1)which diagonalizes matrix G O) through a similarity transformation like that in 
(19). Define matrix u(1), which is identical with matrix v(1). 

Step k. Transform matrix G (k) by the similarity transformation with the matrix u(k - 1), 
generated in the previous step, into a matrix ~(k). Find a new orthogonal matrix v(k) of 
smaller dimension which diagonalizes the submatrix of ~(k) in a space which excludes 

the orbitals of shells K I ,  K 2 . . . .  K k -  1" Matrix u(k), which corresponds to the resulting 
similarity transformation of G (g), is given by (:0) 

u(k) = u ( k -  1)" ,(k) ' (20) 

where I is the identity matrix in the space of shells K1, K2 . . . .  Kk-1.  

After all N steps are performed, the resulting matrix u(N) is the new trial matrix u ~ of 
step 1. Iterations should be repeated until the resulting u(N) matrix is equal (up to a given 
accuracy) to the initial matrix u ~ of that cycle. 

It may be easily verified that this iterative algorithm produces in each cycle the matrices 
Q(P) of the structure shown in Fig. lb. Namely, new similarity transformations of steps 
k, k + l, . . .  are not able to destroy the zero submatrices in section p of matrix Q(P), 
p < k, which were created in step p, since these additional similarity transformations do not 
involve orbitals of sets K1, K 2 . . . K p . . . K k - 1 .  In fact, only the matrix Q(N) of all Q-matrices 
is actually constructed in this iterative procedure. However, if other matrices Q(P) would 
be formed by the similarity transformation of G (p) with the matrix u(N), they would 
exhibit the structure shown in Fig. lb. When the self-consistent matrix u(N) is obtained, 
Eqs. (11) will be satisfied due to the property (14). 

4. Conclusions 

An algorithm was found for a numerical solution of the set of open-shell SCF equations. 
This algorithm is based on a sequence of matrix diagonalizations and similarity transform- 
ations. The procedure may be applied only if the parameters ~kqp in the operator X qp in 
Eq. (6) are symmetric, Xqp = Xpq. The optimal value of these parameters should be deter- 
mined by actual numerical work. It is clear, however, that they should not vanish or be 
close to one. 

The algorithm developed here might prove to be useful also in solving orbital equations of 
the multi-configurational SCF scheme. Its generalization for solving the open-shell SCF 
equations of the complex molecular orbitals method [9, 10], which is characterized by 
complex non-Hermitian SCF matrices, will be reported in a separate publication. 
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